Problem 1. Consider a stock in a binary one-period model with value 100 USD at time $t=0$. We assume that the value increases by 7 percent in the up-state and decreases with 3 percent in the down state at $t=1$. The risk free interest rate r is 5 percent.
(i) Calculate the risk neutral probability distribution.
(ii) Calculate the arbitrage free price c of a European call option written on this stock with strike price $K=67$ USD.

Answer:

The risk neutral probabilities are $(q, 1-q)=(0.8,0.2)$ and the call price

$$
c=\frac{38}{1.05} \simeq 36.2
$$

Problem 2. Patients arrive independently and at random to a medical facility with a mean of 5 patients per hour.
(i) What is the distribution of the number of patients arriving during a period of two hours?
(ii) What is the probability that exactly k patients arrive during a period of two hours for each k ?
(iii) Let Y_{1} denote the stochastic variable that measures the time from the opening of the clinic until the first (or more) patients arrive. What is the distribution of Y_{1}.

Answer:

(i) The Poisson distribution with parameter $\lambda=10$.
(ii) Let X denote the stochastic variable that counts the number of patients in a two hour period. Then

$$
P[X=k]=e^{-\lambda} \frac{\lambda^{k}}{k!},
$$

where $\lambda=10$.
(iii) Y_{1} is exponentially distributed with parameter $\mu=5$.

Problem 3. Let B_{t} denote the Brownian motion. Show that the expectation

$$
E\left[\exp \left(B_{t}\right)\right]=e^{t / 2} \quad t \geq 0
$$

Answer:

$\exp \left(B_{t}\right)$ is a special example of the geometric Brownian motion

$$
X_{t}=\exp \left(\mu t+\sigma B_{t}\right)
$$

which is known to have mean $E\left[X_{t}\right]=\exp \left(\mu+\sigma^{2} / 2\right) t$. Setting $\mu=0$ and $\sigma=1$ we obtain $E\left[\exp \left(B_{t}\right)\right]=e^{t / 2}$.

Problem 4. Let B_{t} denote the Brownian motion and take $c>0$. Show that the process

$$
\hat{B}_{t}=\frac{1}{c} B_{c^{2} t} \quad t \geq 0
$$

also is a Brownian motion.

Answer:

It is clear that $\hat{B}_{0}=0$, and that \hat{B}_{t} has stationary and independent increments. We also note that \hat{B}_{t} is normally distributed with mean zero and variance

$$
\operatorname{Var} \hat{B}_{t}=\frac{1}{c^{2}} \operatorname{Var} B_{c^{2} t}=t
$$

Problem 5. We consider the Heath-Jarrow-Morton (HJM) framework for interest rate models. The forward rates $F(t, T)$ are modeled by specifying the dynamics

$$
d F(t, T)=\alpha(t, T) d t+\sigma(t, T) d B_{t} .
$$

Assume that the forward rate volatility $\sigma(t, T)$ is given by

$$
\sigma(t, T)=\sigma e^{-(T-t)} \quad 0 \leq t \leq T
$$

where $\sigma>0$ is a constant.
(i) Calculate the forward rate drift $\alpha(t, T)$ for $0 \leq t \leq T$.
(ii) Show that $\alpha(t, T) \rightarrow 0$ for $t \rightarrow T$.

Answer:

(i) We use the drift condition in the HJM model and obtain

$$
\alpha(t, T)=\sigma^{2} e^{-(T-t)}\left(1-e^{-(T-t)}\right)
$$

(ii) It follows that $\alpha(t, T) \rightarrow 0$ for $t \rightarrow T$.

